
Extensions of Logic Programming for
Preference Representation

Antonis Troumpoukis?

National and Kapodistrian University of Athens,
Department of Informatics and Telecommunications

antru@di.uoa.gr

Abstract. We consider the problem of preference representation us-
ing extensions of logic programming. In this dissertation, we propose
two approaches for expressing preferences. Regarding the first approach,
we propose PrefLog, a logic programming language which uses an un-
derlying infinite-valued truth domain in order to support quantitative
preference operators. We introduce the syntax and the semantics of the
language, and we study the properties of the PrefLog operators that
are needed in order for programs to behave well from a semantic point
of view. In addition, we introduce a terminating bottom-up evaluation
method for a well-defined class of function-free PrefLog programs. Re-
garding the second approach, we propose the use of higher-order logic
programming as a framework for representing qualitative preferences.
In this approach, relations, preferences between tuples, preferences be-
tween sets of tuples and operations on preferences are expressed in the
same, higher-order language. The programs can be evaluated by stan-
dard higher-order programming systems, and their performance can be
enhanced with generic and specialized optimization techniques. Among
these techniques, we propose a novel program transformation technique
for translating higher-order programs into first-order ones and we use
this technique for optimizing the higher-order programs of our interest.

1 Introduction

Preferences play a major role in human life. They can affect us in many situ-
ations; from simple personal choices in early childhood (e.g., “which ice-cream
flavor do you prefer?”) up to complex professional decisions (e.g., “should I pur-
sue a career in music or in computer science?”). Therefore, it comes as no surprise
that preferences have been explored in many scientific disciplines (such as Phi-
losophy, Economics, and Psychology). Research in preferences is very active in
Computer Science, mostly in areas such as Artificial Intelligence [10], Database
Systems [20], and Programming Languages [9]. One of the main objectives of
the study of preferences in Computer Science is the design of languages and
frameworks that can provide us with the ability to choose among alternatives
in a declarative way, whether these alternatives are problem solutions, program

? Dissertation Advisor: Panos Rondogiannis, Professor

answers, or query results. Effective user preference representation formalisms
can be applied in information systems so that the responses presented to the
users can be more compact and comprehensive because it can reflect their true
interests.

Preference representation formalisms usually fall into two basic categories [20].
In the quantitative approach [1, 2, 3, 15], preferences are represented by a pref-
erence value function. Each object is associated with a preference score, which is
a numerical value that expresses the degree of interest (e.g., “my preference in
beer is 0.9 while in wine it is 0.2”). In the qualitative approach [7, 8, 13, 14, 25]
preferences are expressed by direct comparisons between objects (e.g., “I prefer
beer over wine”), thus resulting in a binary preference relation. Each category
has its strengths and its weaknesses. The qualitative approach is more general
than the quantitative approach (i.e., not all preference relations can be expressed
by scoring functions or through degrees of interest [7, 20]). On the other hand,
quantitative preferences can distinguish how much preferred one object is over
another (e.g., a preference score of 0.9 is much more preferred than a score of
0.001, but is a little more preferred than a score of 0.899).

As a general observation, we could say that both qualitative and quanti-
tative formalisms that have been developed leave much room for improvement
both in terms of expressiveness and efficiency. Quantitative approaches usually
rely on the definition of a preference function. However, a preference function
cannot always be defined, and if it can, users in most cases are rarely willing
to express their preferences directly in terms of such a function. Qualitative ap-
proaches have their weaknesses too; first, they usually offer a quite limited set of
preference operations—in most cases, only one preference operator can be used
(namely, “find the most preferred objects according to this preference”); second,
almost all approaches use two distinct languages, one for representing the base
knowledge and one for representing the preferences, making the structure of the
representation non-uniform. Moreover, qualitative approaches rely on structures
such as partial order relations, which are more complex than simple numerical
values; therefore, the process of handling a qualitative preference is clearly a
more complex task than that of a quantitative preference. As a result, the devel-
opment of optimization techniques for enhancing the performance of qualitative
frameworks can be of crucial importance from a practical point of view.

The purpose of this dissertation is to study new, more expressive formalisms
for representing and manipulating preferences. In particular, we use two exten-
sions of logic programming:

– The first approach uses infinite-valued logic programming for expressing
quantitative preferences. This language is based on an infinite set of truth
values in order to support operators for expressing preferences.

– The second approach uses higher-order logic programming for expressing
qualitative preferences. In this approach, preference relations and operations
on preferences are expressed in the same, higher-order language.

Our approaches attempt to overcome the shortcomings that were mentioned
previously. In our quantitative approach, the preference values are not denoted

2

directly but are expressed using appropriate preference operators. In our qual-
itative approach, base relations, preferences, and operations on preferences are
represented using the same language making our approach more uniform. In ad-
dition, our framework allows the definition of many preference operators other
than those that are offered in most qualitative approaches in the literature.

Our contributions can be summarized as follows:

– We argue that the adoption of many-valued logics is a promising idea for
developing expressive new preferential logic programming languages. We de-
fine the simple preferential logic programming language PrefLog which dif-
fers from other preferential logic programming approaches in that it uses
an underlying infinite-valued truth domain in order to support quantita-
tive preference operators. We show that the continuity of these operators
over the infinite-valued underlying domain ensures that the resulting logic
programming system retains all the standard and well-known properties of
classical logic programming (and most notably the existence of a least Her-
brand model).

– We demonstrate that terminating bottom-up evaluation can be performed
for a large function-free fragment of PrefLog. This result is not obvious:
despite the fact that the Herbrand Base of the programs we consider is
finite, an atom may obtain an infinity of truth values during a bottom-up
evaluation, resulting in possible non-termination.

– We argue that higher-order logic programming is a very expressive frame-
work for representing and manipulating qualitative preferences. A significant
advantage of our approach is that preference formulas as-well-as operators
that are parameterized with such formulas can be expressed in the same
language. Moreover, the seemingly more demanding case of preferences over
sets can be handled without extra notational overhead, because preferences
over sets are essentially second-order relations and can, therefore, be encoded
easily in our higher-order language.

– We implement specialized techniques that can enhance higher-order logic
programming so that it can better handle and manipulate preferences. We
propose Predicate Specialization, a transformation technique based on the
abstract framework of Partial Evaluation. This technique is used for optimiz-
ing higher-order logic programs that express preferences over tuples by trans-
forming them into first-order ones. Moreover, we implement two custom-
tailored implementation strategies for optimizing set-preference higher-order
programs. Finally, we provide experimental results that suggest that the pro-
posed techniques can enhance the performance of our higher-order frame-
work.

The rest of this document is organized as follows: in Section 2, we present
PrefLog, an extension of classical logic programming for expressing quantitative
preferences; in Section 3 we present a higher-order logic programming framework
for expressing quantitative preferences; and finally, we close with conlusions and
some pointers to future work.

3

2 Quantitative Preferences and Infinite-Valued Logic
Programming

2.1 An intuitive overview

The central idea of the infinite-valued approach can be summarized as follows:
We can represent quantitative preferences with an infinite set of truth values,
such that the different levels of truth correspond to different degrees of preference.
In order for the description to be more natural though, the manipulation of the
different levels of preference should not be done by processing the truth values
directly, but with the use of operators that resemble preference operations that
appear in natural languages. The above idea can be illustrated in the following
example:

Example 1. Suppose that we are using an online flight reservation system in
order to fly from Athens to Boston. Assume that we want to book a flight ticket
from Athens to Boston, and optionally flying with “Reliable Airlines”. This fact
can be encoded as follows:

desired flight(F) ← from to(athens, boston, F) ∧
opt carrier(F, reliable air).

The above program looks like a classic logic program, with the difference that it
uses the opt operator. If this operator is not present then the atom expresses a
necessary condition; otherwise, the atom expresses an optional condition that it
“would be preferable but not necessary, to be satisfied”. Now, suppose that we
issue a query of the form:

← desired flight(F).

If the query succeeds then we found a flight from Athens to Boston with Reliable
Airlines. If the query completely fails then there does not exist any flights from
Athens to Boston. If the query partially fails (meaning that it is evaluated into
an intermediate truth value), then a flight has been found which however is not
with Reliable Airlines. This means that we can fly to our destination, but not
traveling with the carrier of our preference.

In order to formulate this approach [17, 18] we introduce the logic programming
language PrefLog, its syntax, and its semantics; in particular, we study the
properties of the PrefLog operators that are needed in order for the PrefLog
programs to behave well from a semantic point of view. In addition, we introduce
a bottom-up evaluation method for a well-defined class of function-free PrefLog
programs.

2.2 The logic programming language PrefLog

We extend classical logic programming with a set of truth values V with the
following ordering:

F0 < F1 < F2 < · · · < 0 < · · · < T2 < T1 < T0

4

Apart from the standard true value, denoted by T0, this set also contains the
truth values T1, T2, . . . that are less and less “true” than T0; moreover, apart from
the standard false value, denoted by F0, it also contains the values F1, F2, . . .
that are less and less “false” than F0. This set of truth values was originally pro-
posed by Rondogiannis and Wadge in order to provide a purely model-theoretic
semantics for logic programming with negation-as-failure [19].

In PrefLog, the preferences are not denoted directly with elements from V,
but are expressed using appropriate preference operators that resemble prefer-
ence operations that appear in natural languages. More formally, the “semantic
meaning” of a n-ary operator ∇/n, is a function ‖∇‖ : Vn → V. Some examples
of preference operators are the following:

‖ ∧ ‖ = min ‖ ∨ ‖ = max

‖optk‖(v) =

Fi+k, v = Fi

0, v = 0

Ti, v = Ti

‖altk‖(v) =

Fi, v = Fi

0, v = 0

Ti+k, v = Ti

Apart from these operators, one could define more preference operators.
In the remaining part of this subsection we will define the semantics of Pre-

fLog. In particular, we study the properties of the PrefLog operators that are
needed in order for programs to behave well from a semantic point of view.

Definition 1. Let x,y ∈ Vn, n ≥ 1 where x = (x1, . . . , xn) and y = (y1, . . . , yn).
We write x ≤ y if xi ≤ yi, for all 1 ≤ i ≤ n.

Proposition 1. Let n ≥ 1. Then, (Vn,≤) is a complete lattice.

Definition 2. Let ∇/n be a preference operator. Then, ∇ is called continuous
if for all sequences (xn)n≥0 of elements of Vn such that for all n ≥ 0, xn ≤ xn+1

it holds ‖∇‖(lub({xn : n ≥ 0})) = lub{‖∇‖(xn) : xn ≥ 0}.

Theorem 1. Let P be a PrefLog program. If all operators used in the bodies of
rules of P are continuous, then P has a least (with respect to ≤) model MP.

The previous theorem suggests that any preference operator can be used
by PrefLog programs as long as it is continuous. In the case of the preference
operators illustrated previously, we have the following proposition:

Proposition 2. The operators ∧,∨, optn, altn are continuous.

2.3 Bottom-up evaluation of a function-free fragment of PrefLog

We reduce our focus in {ε,∧}-programs, which are PrefLog programs that do
not use functional symbols and contain only the operators ∧ and ε, where:

‖ε‖(v) =

Fi+1, v = Fi

0, v = 0

Ti+1, v = Ti

5

The operator ε is continuous, therefore is a valid PrefLog operator. Even though
it can be shown that there exist valid preference operators that cannot be de-
fined using ∧, ∨ and ε, all programs that we have used in the dissertation are
constructed using these operators. For instance, for optn and altn it holds:

optn A ≡ A ∨
n︷ ︸︸ ︷

ε ε · · · ε A altn A ≡ A ∧
n︷ ︸︸ ︷

ε ε · · · ε A

This fact suggests that every program that uses ∧,∨, optn, altn or any other
operator that can be defined using these operators can be transformed into an
equivalent {ε,∧}-program.

The most direct way of evaluating the minimum model of a {ε,∧}-program P
in a bottom-up manner is to begin by assigning F0 to all ground atoms of P, use
the rules of P to compute new values for all atoms, and repeat this procedure
until the values of all atoms stabilize. Even though this procedure terminates for
classical Datalog programs, this does not hold in our case, because each atom
can receive any truth value from the infinite set V. For example, the program

p ← ε p.

has the minimum-model {(p, 0)} which is produced using an infinite number of
steps, namely: {(p, F0)} {(p, F1)} {(p, F2)} · · · {(p, 0)}.

A solution is to evaluate the minimum model in stages, using the followng
Terminating Bottom-up Evaluation strategy:

1. Set F0 to all atoms.
2. For k = 0, 1, . . .

(a) Use the rules of the program to compute new values for all atoms.
(b) Repeat until the set of atoms that have Fk, Tk values stabilize.
(c) If there are no remaining atoms (i.e., atoms with value with order > k) :

i. End the evaluation.
(d) If a gap (i.e., no atoms with value with order k) is produced:

i. Set 0 to all remaining atoms.
ii. End the evaluation.

(e) Set Fk+1 to all remaining atoms.

For example, the minimum model of the program

p ← ε p.
q ← r.
r.

is evaluated using the above strategy as follows: {(p, F0), (q, F0), (r, F0)}
{(p, F1), (q, F0), (r, T0)} {(p, F2), (q, T0), (r, T0)} {(p, F3), (q, T0), (r, T0)}
 all atoms with values F0, T0 stabilize {(p, F1), (q, T0), (r, T0)} {(p, F2),
(q, T0), (r, T0)} gap at order 1 {(p, 0), (q, T0), (r, T0)}.

For this evaluation algorithm we have the following theorem. Regarding the
correctness proof, we use material from [11, 19]. Regarding the termination proof,
we use the fact that {ε,∧}-programs do not have gaps in their minimum models.

Theorem 2. The Terminating Bottom-up Evaluation correctly computes the
least model MP of any given {ε,∧}-program P in a finite number of steps.

6

3 Qualitative Preferences and Higher-Order Logic
Programming

3.1 Background

The starting point of our approach is an influential proposal by J. Chomicki [7]
for representing qualitative preferences in the context of relational database sys-
tems. Chomicki’s approach is based on the following two ideas:

– Preferences between tuples of a database relation are specified using binary
preference relations; these relations are defined using first-order formulas,
called preference formulas.

– A new relational algebra operator is introduced. This operator is called
winnow and takes two parameters; a database relation and a preference for-
mula. The winnow operator selects from its input relation the most preferred
tuples according to the given preference formula. In particular:

winnowC(R) = {t ∈ R : ¬∃t′ ∈ R s.t. t′ �C t}

Example 2. Suppose that we have a relation of movies. Now, suppose that we
want to express the following preference relation: “Prefer one movie over another
iff their genres are the same and the rating of the first is higher”. This preference
relation can be described using the following preference formula:

t1 �C t2 ≡ (t1.genre = t2.genre) ∧ (t1.rating > t2.rating)

As a result, the query winnowC(movie) will return the most preferred movies
from the relation movie using the preference relation C of our interest.

The approach advocated by Chomicki, despite groundbreaking, has certain
limitations. First, it supports only intrinsic preferences (that is preference re-
lations that depend solely on the basis of the values occurring in the tuples).
Second, the preference relations and the preference queries are expressed in two
different languages, namely, first-order logic and SQL extended with the winnow

operator, which makes the approach less uniform. Third, there is no way to define
directly other operators apart from winnow. And finally, the framework cannot
be extended in a straightforward and elegant way for expressing preferences over
sets (consider the extension of Zhang and Chomicki [25] which uses additional
concepts such as features and profiles).

3.2 Expressing Preferences using Higher-Order Logic Programming

The central idea of the higher-order approach can be summarized as follows:
Since qualitative preferences can be expressed using binary preference relations,
and since operations on preferences involve operations that take preference rela-
tions as arguments, a higher-order language can offer increased representation
capabilities. Moreover, sets of tuples are also relations, therefore preferences over
sets are essentially second-order relations and can encoded easily in a higher-
order language. The above idea can be illustrated in the following examples:

7

Example 3. Suppose that we have a relation of movies encoded with facts of the
form movie((Name,Genre,Rating)). The preference relation of Example 2 can
be encoded easily using the following logic program:

c_pref((N1,G,R1), (N2,G,R2)) :- movie((N1,G,R1)),

movie((N2,G,R2)), R1 > R2.

The above program is a first-order one, so it does not use any higher-order
features. However, if we want to define an operator that processes preference
relations such as the above, we need to define higher-order predicates. For ex-
ample, the following operator winnow(C,R,T) returns the best tuples T from a
relation R according to a binary preference relation C:

winnow(C,R,T) :- R(T), not bypassed(C,R,T).

bypassed(C,R,T) :- R(Z), C(Z,T).

Notice that the above program is a higher-order one, since it contains variables
that appear in places where predicates typically occur, and predicates that can
accept other predicates as arguments. As a result, the following query:

?- winnow(c_pref,movie,T).

will return the most preferred movies from the relation movie using the prefer-
ence relation c_pref of our interest.

Example 4. Suppose that we have a relation of movies and we want to express
the following preference between sets of movies: “we want to watch 3 movies and
we prefer the sum of the ratings of the movies to be the highest possible”. In the
following higher-order program which encodes the above preference, we assume
the existence of a predicate rating_sum(S,N), which returns in the variable N

the sum of the ratings of the elements of the set S:

rating_pref(S1,S2) :- rating_sum(S1,N1),

rating_sum(S2,N2), N1 > N2.

Moreover, assume the existence of a predicate subsetof(R,N)(S), which returns
in the variable S all subsets of size N from the relation S. This syntax with the
extra pairs of parentheses allows us to use the feature of partial applications, i.e.,
the ability to invoke a higher-order predicate with only some of its arguments.
For instance, the expression subsetof(movie,3) represents the relation of all
subsets of movie of size 3. As a result, the following query:

?- winnow(rating_pref,subsetof(movie,3),S).

will return the most preferred sets of movies accding to the preference relation
rating_pref of our interest. Notice that the winnow operator is the same as
previously, but now it is third order. We note that the actual implementation
of the subsetof predicate depends on the higher-order language that we are
using, because not all higher-order logic programming languages treat existential
predicate variables with the same manner.

8

Example 5. The higher-order features allow us to define generic operators on
preference relations. For example, consider a relation r and two preference rela-
tions c1_pref and c2_pref. Suppose now that we have the following preference
that combines these preference relations: “Prefer a tuple t1 from a tuple t2 us-
ing c1_pref. If they are incomparable according to c1_pref, then compare them
using c2_pref”. Consider the following program:

prioritized(C1,C2)(T1,T2) :- C1(T1,T2).

prioritized(C1,C2)(T1,T2) :- indifferent(C1)(T1,T2),

C2(T1,T2).

indifferent(C)(T1,T2) :- not C(T1,T2), not C(T2,T1).

The above predicates can be partially applied. As a result, the following query:

?- winnow(prioritized(c1_pref,c2_pref),r,T).

will return the most preferred tuples from the relation r using the prioritized
composition of the relations c1_pref and c2_pref.

The higher-order approach [4, 5], goes beyond most disadvantages of the
framework of Chomicki. It allows the definition of extrinsic preferences, that is
preference relations that depend not only on the values that appear in the tuples,
but also on external relations (e.g., “a tuple t1 is preferred from t2 if t1 belongs
to relation p while t2 belongs to relation q”). It allows the definition of additional
preference compositions (such as the so-called Pareto and Lexicographic compo-
sitions), additional preference operators (such as an operator with the intuitive
meaning “find the second most preferred objects according to this preference”).
We can also define preferences over recursively defined realations and preferences
over relations that use preference operators. In general, the use of higher-order
logic programming provides a uniform framework in which relations, preferences
between tuples, preferences between sets of tuples and operations on preferences
are expressed in the same, higher-order logic programming language. Finally,
this qualitative approach can be used for implementing practical query systems
outside the realm of logic programming and relational databases [23].

3.3 Optimizing Preferential Higher-Order Logic Programs

The higher-order programs of our interest can be evaluated by standard higher-
order programming systems. We undertake an implementation1 of the higer-
order framework in the logic programming language HiLog [6] using the XSB
System [21]. A naive, unoptimized implementation is relatively straightforward.

The performance of our implementation can be enhanced with several generic
and specialized optimization techniques. Among these techniques, we propose [22]
and implement2 Predicate Specialization, a novel program transformation tech-
nique for translating higher-order programs into first-order ones. The technique

1 cf. http://bitbucket.org/antru/holppref
2 cf. http://bitbucket.org/antru/firstify

9

is based on Partial Evaluation [12]; it gets as input a higher-order logic program
P and a goal G and returns a first-order logic program P′ and a goal G′, such that
the computations of P∪ {G} and P′ ∪ {G′} return the same answer set. It works
for a well-defined fragment of higher-order logic programs (that is definitional
H programs) and for input goals that do not contain predicate variables. In a
nutshell, a definitional H program uses a controlled form of partial applications
(to ensure termination) and does not allow existential predicate variables in the
bodies of the clauses (to ensure a first-order result). Finally, contrary to other
first-order reduction techiques such as defunctionalization [16, 24], the resulting
programs of Predicate Specialization does not have additional data structures,
and as a result the overall program execution time can be reduced.

Example 6. Consider the program P and the query G of Example 3. By applying
Predicate Specialization to P according to G we get the following program:

winnow1(T) :- movie(T), not bypassed2(T).

bypassed2(T) :- movie(Z), c_pref(Z,T).

The initial query G can now be stated in the transformed program as follows:

?-winnow1(T).

Notice that both queries return the same set of answers, and that this program
is specialized according to the relation movie and the preference relation c_pref.
Notice that the resulting program is a first-order program due to the fact that
the initial query does not contain any predicate variables.

Apart from Predicate Specialization, we used other optimization techiques as
well. For optimizing the first-order programs obtained by Predicate Specializa-
tion we used tabling, a well-known logic programming optimization that avoids
re-evaluation of tabled predicates by storing their already computed answers.
In addition, for optimizing higher-order logic programs that express prefer-
ences over sets we implemented two optimization techiques from Zhang and
Chomicki [25], namely superpreference and M-relation. Each technique uses a
mechanism for pruning the set of the candidate k-subsets. Intuitively, superpref-
erence removes tuples that will not contribute to the production of any best
k-subset, while the M-relation “groups together” tuples that are exchangeable
with respect to a given set preference. Finally, we conduct a series of experiments
that highlight the feasibility of the higher-order logic programming framework
and the effectiveness of these optimizations.

4 Conclusions and Future Work

This dissertation contributes to the area of preference representation and our
results can be perceived as logical frameworks for expressing and manipulat-
ing preferences. More specifically, we propose two approaches for expressing
preference, namely infinite-valued and higher-order logic programming. Our ap-
proaches attempt to overcome some shortcomings of existing approaches in the
domain of representation of quantitative and qualitative preferences.

10

Regading our infinite-valued approach, possibly the most interesting future
direction is the addition of negation-as-failure to PrefLog. It has been demon-
strated [19] that the meaning of negation can also be captured using the infinite-
valued domain V that we adopted for defining the semantics of PrefLog. It would
be interesting to investigate how the preference operators of PrefLog could co-
exist with negation in a unified framework. Regading our higher-order approach,
we believe that it would be very interesting to study the properties and possi-
ble evaluation techniques of the higher-order language of our framework, other
than Predicate Specialization. For example, it would be interesting to investigate
bottom-up proof procedures or other optimizations.

References

[1] Agarwal, R.: A Framework for Expressing Prioritized Constraints Using
Infinitesimal Logic. Master’s thesis, University of Victoria, Canada (2005)

[2] Agarwal, R., Wadge, W.W.: The lazy evaluation of infinitesimal logic ex-
pressions. In: Proceedings of The 2005 International Conference on Pro-
gramming Languages and Compilers, PLC 2005, Las Vegas, Nevada, USA,
June 27-30, 2005. pp. 3–7. CSREA Press (2005)

[3] Agrawal, R., Wimmers, E.L.: A framework for expressing and combining
preferences. In: Proceedings of the 2000 ACM SIGMOD International Con-
ference on Management of Data, May 16-18, 2000, Dallas, Texas, USA. pp.
297–306. ACM (2000)

[4] Charalambidis, A., Rondogiannis, P., Troumpoukis, A.: Higher-order logic
programming: an expressive language for representing qualitative prefer-
ences. In: Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, Edinburgh, United Kingdom,
September 5-7, 2016. pp. 24–37. ACM (2016)

[5] Charalambidis, A., Rondogiannis, P., Troumpoukis, A.: Higher-order logic
programming: An expressive language for representing qualitative prefer-
ences. Sci. Comput. Program. 155, 173–197 (2018)

[6] Chen, W., Kifer, M., Warren, D.S.: HILOG: A foundation for higher-order
logic programming. J. Log. Program. 15(3), 187–230 (1993)

[7] Chomicki, J.: Preference formulas in relational queries. ACM Trans.
Database Syst. 28(4), 427–466 (2003)

[8] Cui, B., Swift, T.: Preference logic grammars: Fixed point semantics and
application to data standardization. Artif. Intell. 138(1-2), 117–147 (2002)

[9] Delgrande, J.P., Schaub, T., Tompits, H., Wang, K.: A classification and
survey of preference handling approaches in nonmonotonic reasoning. Com-
putational Intelligence 20(2), 308–334 (2004)

[10] Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an
overview. Artif. Intell. 175(7-8), 1037–1052 (2011)

[11] Ésik, Z., Rondogiannis, P.: A fixed point theorem for non-monotonic func-
tions. Theor. Comput. Sci. 574, 18–38 (2015)

11

[12] Gallagher, J.P.: Tutorial on specialisation of logic programs. In: Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM’93, Copenhagen, Denmark, June 14-
16, 1993. pp. 88–98. ACM (1993)

[13] Govindarajan, K., Jayaraman, B., Mantha, S.: Preference logic program-
ming. In: Logic Programming, Proceedings of the Twelfth International
Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995. pp.
731–745. MIT Press (1995)

[14] Guo, H., Jayaraman, B.: Logic programming with solution preferences. J.
Log. Algebr. Program. 78(1), 1–21 (2008)

[15] Koutrika, G., Ioannidis, Y.E.: Personalization of queries in database sys-
tems. In: Proceedings of the 20th International Conference on Data En-
gineering, ICDE 2004, 30 March - 2 April 2004, Boston, MA, USA. pp.
597–608. IEEE Computer Society (2004)

[16] Reynolds, J.C.: Definitional interpreters for higher-order programming lan-
guages. Higher-Order and Symbolic Computation 11(4), 363–397 (1998)

[17] Rondogiannis, P., Troumpoukis, A.: The infinite-valued semantics:
overview, recent results and future directions. Journal of Applied Non-
Classical Logics 23(1-2), 213–228 (2013)

[18] Rondogiannis, P., Troumpoukis, A.: Expressing preferences in logic pro-
gramming using an infinite-valued logic. In: Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Programming,
Siena, Italy, July 14-16, 2015. pp. 208–219. ACM (2015)

[19] Rondogiannis, P., Wadge, W.W.: Minimum model semantics for logic pro-
grams with negation-as-failure. ACM Trans. Comput. Log. 6(2), 441–467
(2005)

[20] Stefanidis, K., Koutrika, G., Pitoura, E.: A survey on representation, com-
position and application of preferences in database systems. ACM Trans.
Database Syst. 36(3), 19:1–19:45 (2011)

[21] Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic program-
ming. TPLP 12(1-2), 157–187 (2012)

[22] Troumpoukis, A., Charalambidis, A.: Predicate specialization for defini-
tional higher-order logic programs. In: Logic-Based Program Synthesis and
Transformation - 28th International Symposium, LOPSTR 2018, Frank-
furt/Main, Germany, September 4-6, 2018, Revised Selected Papers. Lec-
ture Notes in Computer Science, vol. 11408, pp. 132–147. Springer (2018)

[23] Troumpoukis, A., Konstantopoulos, S., Charalambidis, A.: An extension of
SPARQL for expressing qualitative preferences. In: The Semantic Web -
ISWC 2017 - 16th International Semantic Web Conference, Vienna, Aus-
tria, October 21-25, 2017, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10587, pp. 711–727. Springer (2017)

[24] Warren, D.H.D.: Higher-order extensions to Prolog: Are they needed? In:
Machine Intelligence, vol. 10, pp. 441–454. Ellis Horwood (1982)

[25] Zhang, X., Chomicki, J.: Preference queries over sets. In: Proceedings of
the 27th International Conference on Data Engineering, ICDE 2011, April
11-16, 2011, Hannover, Germany. pp. 1019–1030. IEEE Computer Society
(2011)

12

